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Abstract. This paper documents a study of novel fracture-toughness properties of brittle
heterogeneous materials. Through simulations of the rupture process based on a lattice
discretization of the material, the spatial variation of dissipated energy due to fracture is
evaluated. Under certain conditions, its distribution is characterized by a multifractal spectrum
f (α). Importantly,f (α) depends not only on the initial heterogeneity present in the material but
also on the nature of the externally applied load. This provides a renewed load-path-dependent
definition of fracture toughness material properties. It avoids the difficulties associated with
‘traditional’ continuum/fracture mechanics definitions where the macroscopic fracture mode must
be knowna priori.

1. Introduction

Materials of technological/scientific interest are infrequently perfectly homogeneous. In
many cases the existence of spatial disorder is highly desirable, as in, for example, concretes,
rocks, ceramics, composites and other brittle heterogeneous materials. Disorder may be
due to the presence of different constituents such as aggregates, pores, micro-cracks and
interfaces. In other words, localized spatial variations in material properties are directly
attributed to the material microstructure. An inhomogeneous microstructure will have a
significant effect on the fracture behaviour of brittle materials, a subject of substantial
technological importance.

The main focus of the present study is on toughness, i.e. the energy dissipated during
the process of rupture, and the properties of brittle heterogeneous materials under various
external loading conditions. A fundamental notion used herein is that fracture of the material
is dependent upon the spatially varying material properties present before the external
loading process begins. In particular, the actual spatial disorders of the initial local elastic
and failure values are reduced to either spatially correlated or uncorrelated random ‘fields’.
As discussed in further detail later, information on the (statistical) properties of such fields
can be obtained experimentally via non-destructive evaluation methods [1], or provisionally
[2, 3], or on a purely geometrical basis [4]. As a result, knowing the (statistical) spatial
disorders of the material allows the use of a statistical mechanics approach to simplify
and solve inhomogeneous structures, i.e. specimens, subjected to intense external loading
conditions.

Using a statistical mechanics strategy, it is readily possible to capture some of
the essential rupture-related behaviours of a brittle material. The fractured structures
contain irregular crack networks in which information about the material may be obtained.
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Consequently, once the cracks have been characterized, important phenomena may be
quantified, such as material resistance to crack formation and dissipated energy due to
fracture. Characterization of the crack networks may become possible through the use of
sets of scaling exponents. As a result, in such cases, scaling laws may be implemented [5].
In short, scaling laws are examined herein in order to quantify several of the resulting
properties of the fracture process.

The present study was inspired by the work of Herrmannet al [6] and Hansenet al [7]
where a two-dimensional beam and central force lattices were utilized, respectively, within
the context of statistical mechanics, to study rupture of disordered media. In these studies a
quenched spatially uncorrelated disorder in the breaking thresholds of the beams and bars,
respectively, was considered. For both lattice configurations the distribution of local forces
just before the final completion of the rupture process was found to be multifractal. At that
instant, the moments(Mn) of ordern of the local forcesF can be characterized by a scaling
exponenty(n), i.e. Mn ∝ Ly(n) whereL is the size of the lattice. Then it is straightforward
to show that the energy stored in the system, proportional toF 2 since the system is linear
and elastic, is multifractal. This then implies that the complementary energy, the energy
dissipated in the process of fracture, should be multifractal. The dissipated energy is a
measure on the fracture network, and this provides further physical interpretation of the
multifractal properties—provided the underlying fracture network is fractal, the dissipated
energy (measure) on it could possibly be multifractal [5]. Since this energy is characteristic
of the material fracture toughness, it is interesting to study the distribution of dissipated
energy. Frantziskonis [8, 9] studied this problem analytically (in two dimensions)—solutions
became possible for a certain limit and specialized cases discussed subsequently. The
analytical solutions suggest that the dissipated energy can indeed be multifractal. In
particular, the so-calledp-model multifractal was investigated. Since analytical solutions
have only been obtained for certain cases of rather limited generality, in this study more
general numerical results are presented.

For simplicity, the fracture process of brittle heterogeneous materials will be investigated
through the use of the two-dimensional central force lattice model. In section 2, a discussion
of the lattice framework model with respect to the present study is presented. This is
necessary since ‘traditional’ fracture-toughness properties are defined within the context of
elasticity (or continuum mechanics in a more general framework); thus a ‘connection’ to the
present study should be established. In section 3, the concept of a fractal is applied to find
fracture surface/network related parameters; finally, the multifractal nature of the dissipated
energy is illustrated in section 4.

2. The numerical model

Analytical solutions to the differential equations of the elasticity theory are often impractical
or impossible to obtain due to mathematical difficulties. There are several methods to obtain
numerical solutions, a review of which is beyond the scope of this paper. Fracture toughness
is principally defined within the context of continuum elasticity theory. In the following the
lattice-based numerical analysis used herein is discussed with respect to classical elasticity
theory. This is so that the continuum mechanics based definitions and available results on
toughness are ‘compared’ to the present study. Further, the continuum mechanics based
analytical solutions presented in [8, 9] can be compared with the results of the present
numerical study.

An appropriate lattice discretization, i.e. replacing the body of a material with a
framework of bars (elements), is a consistent method for the solution of elasticity problems—
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cf Hrennikoff [10] as well as recent publications referred to below. Arrangement of the
bars is performed according to a specific pattern, in which individual elements are assigned
particular elastic and fracture properties. In addition, boundary and internal stresses and
corresponding displacements of the model are distributed over the tributary bars in order
to obtain the equivalent stresses and displacements of the original elastic body. In other
words, the lattice is formed by using the same geometric outline, boundary conditions and
loads of the original solid body (which may even contain micro-cracks). External loads,
either given displacement or traction, are applied at the nodes (joints). Consequently, with
a few qualifications which will be discussed next, the lattice method may be applied to an
immense variety of situations and allow convenient and accurate modelling of the original
(continuum) structure.

A necessary and sufficient condition for the equivalent mechanical behaviour of the
lattice model and the original solid material is equality of the deformation, simply because
deformability is the one physical characteristic which will determine the stresses throughout
the media. This has been demonstrated [10], i.e. when the element size of the lattice (the
spacing) is small enough compared to the length scale above which information is sought.
Accordingly, a lattice of small finite-sized elements will give a framework which closely
resembles the original mechanical system. Although it is not exact, the lattice method yields
solutions to a number of problems in which formal implementation of the elasticity theory
fails. For highly heterogeneous materials, the lattice spacing is crucial in representing the
material microstructure. This is discussed further below.

Triangular two-dimensional framework systems are considered herein. The bars may
either articulate about the nodes (rotate freely) or be devoid of any rotational behaviour.
The former case is presented and used in this study. This framework is known as the
central-force lattice model. It is noted that for the type of framework chosen the conditions
of deformability may be satisfied for only one value of Poisson’s ratio, which is1

3—this
is applicable for any isosceles triangular central-force lattice system. If other values of
Poisson’s ratio are desired, other framework patterns must be considered. However, for the
present study the developed value of1

3 will suffice.
The spatially dependent material properties are fixed before the loading (rupture)

program begins. This is known as a quenched disorder process. Some of the local material
characteristics which may be implemented into the lattice model are density, elastic modulus
and failure strength. It has been shown through non-destructive experimental evaluation [1]
that some heterogeneous brittle materials have a quasi-constant local density to local elastic
modulus ratio. It is concluded that for length scales larger than a typical scale (i.e. the grain
size in a granular or polycrystalline material) it is, rather, the failure strength that varies
spatially in a fashion important for fracture. Although further research in this important
area is necessary—cf [1] for an extensive discussion—based on current knowledge and in
order to reduce the number of possible material parameters, this condition will be assumed
for the present case. As a result, the characteristics of the modelled engineered material
will be reflected in the failure strengths of the individual elements.

Each element is endowed with its own particular value of failure strength,S. Under
the assumption that the elements are ideally linearly elastic and brittle, a bar will break
when the force to which it is subjected exceedsS (for compression) orT (for tension). The
relation between the absolute values of the compression and tension breaking parameters is
given byT = RS, whereR may be defined for each element. However, for simplicity, only
the case of symmetric rupture criterion is considered(R = 1). For simulation purposes,S
is considered, in general, to be a random field. The choice to consider spatial correlations
in S (a special case calls forS being a spatially uncorrelated random variable) was based
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upon many factors:
• the lattice spacing is assigned to be equal to the lower ‘cut-off’ of material

heterogeneity, a scale characteristic of the microstructure, in general much larger than the
atomic, i.e. the grain size in a granular material. The presence of heterogeneities at larger
scales, i.e. larger aggregates in a concrete material, introduce spatial correlations.

• even in the absence of heterogeneities at larger scales, the geometrical arrangement
of the constituents naturally introduces spatial correlations, i.e. consider a packing of (equal
size) spheres as a two-phase material and the spatial correlations on either of the two phases.

• it is feasible to determine the statistical properties of actual heterogeneous materials
experimentally, i.e. as done by Breysseet al [4], or as suggested by Dai and
Frantziskonis [1]. For example, it has been found that for a typical concrete material, a
spatial material properties correlation length appears to be equal to a few times the maximum
aggregate size or a few times the average distance between the large aggregates.

Despite the presence of very encouraging results in the literature, further research is
needed to identify the statistical properties of actual materials precisely. Lack of complete
information at this time should not, however, discourage investigations along the lines
suggested herein. Thus, in the following,S is considered to be statistically stationary with
a Gaussian autocorrelation function. Its expected value, variance, and (auto-) correlation
length provide, then, complete statistical information onS. The correlation length ofS, `S ,
is the radius of a circle beyond whichS ceases to be correlated [11].

This approach to solid mechanics problem solving allows a natural induction of
disorder into the model and a physical interpretation of the algorithm is readily available.
In other words, use of the lattice numerical model in conjunction with spatially
correlated material properties suggests a ‘connection’ between a purely statistical mechanics
approach to fracture, i.e. [7], and a continuum/fracture mechanics approach which is
based on homogenized values of material properties and crack propagation through a
mathematically homogeneous solid. For infinitely long correlations the problem reduces
to a ‘continuum/fracture mechanics’ one, while the spatially uncorrelated problem is a ‘pure
statistical mechanics’ one. Once the continuous elastic equations have been discretized into
a set of coupled linear equations, with the imposed boundary conditions, the system of
equations may be solved by an efficient algorithm. If the boundary conditions consist of
displacement constraints, then the coupled equations are directly modified; this is performed
explicitly in the equations which correspond to the constrained nodes. A variety of externally
imposed displacement loading conditions are investigated: uniaxial tension, dilatation and
shear. Hence, with the boundary conditions implemented accordingly, the set of equations
are solved by a defined algorithm, which will be described next.

The simulation of the displacement loading process on the lattice is done in an iterative
manner. First, the system of equations is solved in order to determine which elements may
be broken under the current load. After an element is broken, the system must be solved
again to find the updated stress field in order to break the next bar, and so on. Inertia forces
are ignored and crack propagation is considered to be ‘slow’, i.e. there is enough ‘relaxation
time’ before further rupture occurs. Note that crack propagation can be dynamic even if the
external load is applied slowly—cf [9] for discussion; however, this case is not considered
in this initial study. That is to say, the simulation algorithm used for the model consists of:

(i) calculating the stress and displacement field of the system of equations;
(ii) determining which elements are eligible to be broken (according to individual lattice

elements fracture criteria);
(iii) removing (breaking) the element that has the highest absolute values of the ratio of

stress andS;
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Figure 1. Example of the rupture process. The external load is applied in uniaxial tension mode
in the vertical direction. The lines show the crack surfaces. One major through-the-width crack
network, responsible for final failure, can be identified.

(iv) resolving the system;
(v) repeating steps (ii) through (iv) until the system reaches complete fracture.
For a typical example of the rupture process for uniaxial tension displacement boundary

conditions in the vertical direction, which is illustrated by the developed crack surfaces, see
figure 1.

3. Fracture network properties

The concept of scaling has proven to be quite valuable in quantifying some of the properties
of heterogeneous materials, thus the literature relevant to scaling properties of fracture
networks/surfaces is very rich. Several experimental, numerical and theoretical studies
have been reported, and for a recent review and trace of the literature we refer to Roux
[12]. Despite the large number of publications on the subject, several issues are not well
understood. For example, there is not, to our knowledge, a concrete physical explanation for
the observed (experimentally) or calculated (numerically) fracture surface scaling properties.
From this perspective, investigation of the associated dissipated energy as suggested herein
is expected to provide further insight.

The fracture surface/network properties are defined through scaling exponents. In certain
cases, there is a correlation between these exponents and toughness: as shown herein, a
positive correlation. Let us first review briefly the process of study followed herein, which
is that of Matsushita and Ouchi [13], and then discuss how it is ‘adapted’ for particular
cases. Suppose that a curve (i.e. a fracture network) is represented, in two-dimensional
space, byy = f (x). Let a (=1), be of unit length, defined as the smallest length scale of
the curve. On the curve, two arbitrary points, A and B, are chosen. The distance between
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A and B along the curve is measured and given in terms ofNa (=N). Next, thex- and
y-variances, var(x) and var(y), respectively, are calculated from measured points on the
curve between A and B. These variances are defined as

var(x) = 1

N − 1

N∑
i=1

(xi − µx)
2 (3.1)

var(y) = 1

N − 1

N∑
i=1

(yi − µy)
2 (3.2)

where

µx = 1

N

N∑
i=1

xi (3.3)

µy = 1

N

N∑
i=1

yi (3.4)

and (xi, yi) is the coordinate of theith measured point on the curve. This procedure is
repeated for many sets of points A and B on the curve. Finally, log–log plots of thex and
y standard deviations versusN are used to see if they scale as

x ∼ Nνx and y ∼ Nνy . (3.5)

As is clear from [13] the ratioνy/νx can be used to characterize a self-affine curve if its
substrate is known or can be calculated. For self-similar curves,νy = νx , thus measures
other thanνy/νx i.e. the inverse ofνy or νx could/should be used in this case, which implies
that νy = νx . As explained in the following, a substrate is not clearly identifiable for
the problems we studied. Thus, althoughνy and νx are direction dependent, in the case
where a substrate is not identifiable/present they (actually their inverse) can be seen as
anisotropic correlation lengths. (As mentioned by Matsushita and Ouchi [13] such lengths
are used in critical phenomena such as in liquid crystals.) For example, if we consider the
(very anisotropic) case of a straight line, when its direction is not specified, i.e. when each
direction between 0◦ and 360◦ has equal probability of being realized, then one would get
1/νy = 1/νx = 2 (i.e. a space filling ‘curve’) which implies equal probability of direction.
Thus for our case the reason why a substrate is not identifiable/present needs to be explained,
and this is explained in the following paragraph.

Let us consider the uniaxial tension problem, where load is applied in they direction. In
the fracture problem studied along the lines of [14] since the initial crack starts in the middle
of the specimen and since fracture is ‘controlled’ to propagate along a specifically defined
‘neighbourhood’, the final crack ends up being more or less parallel to thex direction, i.e. the
substrate is identifiable in this case. Although this may have a clear physical interpretation,
i.e. for certain materials, for our problem, the crack(s) initiate at the location(s) dictated
by the problem. Due to interactions with the free as well as with the loaded surfaces, it
may be shown [15, 16] that cracks are most likely to initiate near the boundaries; however,
although such ‘surface effects’ are important, the following conclusions also hold, in general,
independent of boundary effects, i.e. for an infinite ‘specimen’. In the problem studied in
our work, fracture initiates, in general, either concurrently or sequentially, at more than
one (i.e. at several) regions. Subsequently, a few small fracture ‘clusters’ are formed, and
final fracture (separation of the specimen into two or more parts) occurs by coalescence
of a few such clusters, usually two but often three or more. In passing it is noted that
occasionally (for some realizations), especially when the ratio of material correlation length
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Table 1. Calculated values,L = 40 (40× 40 lattice),`S/L = 1.0.

Uniaxial Tension Dilation Shear

COV 1/νx 1/νy 1/νx 1/νy 1/νx 1/νy

0.1 1.15 1.27 1.31 1.32 1.65 1.63
0.2 1.20 1.33 1.36 1.35 1.75 1.71
0.3 1.27 1.36 1.37 1.38 1.75 1.72
0.4 1.27 1.38 1.42 1.43 1.78 1.79
0.5 1.30 1.38 1.48 1.46 1.85 1.83

over specimen length is large (i.e. close to unity) a single crack forms. Thus, in general,
a substrate cannot be defined, since for each realization of the problem such a substrate is
formed randomly. Thus, it is made clear that 1/νy and 1/νx should be interpreted in the
form of anisotropic correlations rather than as fractal dimensions. Finally, it is mentioned
that even a case which calls forνy = νx does not exclude the possibility that each (or some)
realizations of the problem show a self-affine fracture ‘surface’. Locally, of course, i.e. in
regions where a substrate is assigned/assumed, a self-affine surface may always be present.

Simulations of the fracture process are performed and ensemble averages of the
quantities of interest are calculated. Here only typical results are presented; a complete
report of the results can be found in [17]. Without loss of generality, the mean ofS has
been defined to be unity. As a typical correlated case and/or material structure (specimen)
of the order of the correlation length, the ratio`S/L = 1.0 was considered. This ratio is
approximately the one for real samples, i.e. for concrete (correlation distance and sample
size are both of the order of a centimetre), large grain size ceramics (of the order of
a millimetre). The values ofνy and νx were calculated for three displacement loading
cases—uniaxial tension, dilatation, and shear. The results of these simulations are given in
table 1.

This table was developed from 50 numerical realizations of 40×40 lattice size (a larger
number of realizations changed the values shown above slightly and rather insignificantly).
Three trends can be identified from the data, for varying fluctuations of the random fields,
i.e. coefficient of variation,COV = 0.1, 0.2, 0.3, 0.4, and 0.5. First, anisotropic (global)
correlation seems to be the case for uniaxial tension while isotropic correlation holds for
dilatation and shear loading. This could be directly due to the symmetric loading placed
on the framework in this case. The second observation is that both 1/νx and 1/νy tend to
increase in the order of uniaxial tension, dilatation, and shear loading. As a result, it may
be concluded that the triangular lattice has ‘toughness’ which is dependent on the loading
environment; this will be examined in the next section. Last, as the fluctuations increase
(for increasingCOV) 1/νx and 1/νy increase slightly, due to the ‘tortuosity’ ofS and related
stress concentrations. As a result, it may be that as the fluctuations increase the material
toughness increases as well. For the influence of correlations, as`S/L increases 1/νx and
1/νy decrease and for a large enough ratio (homogeneous case) 1/νx and 1/νy tend towards
unity (straight crack pattern). As̀S/L decreases, 1/νx and 1/νy increase slightly. In the
following, the dissipated energy, the central theme of this work, is examined.

4. Multifractal properties of the dissipated energy

There are many physical quantities where in order to have an exhaustive characterization
of their distribution, the implementation of an infinite series of scaling exponents may be
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necessary. Such generalized quantities can be equivalently described by the corresponding
multifractal spectrum, i.e. [18]. In other words, a description of a distribution (measure)
that is multifractal in nature may be described by the correspondingf (α) versusα curve.
Thus, the infinite set of scaling exponents are characterized by their singularities and the
Lipshitz–Hölder exponent,α, determines the strength of the singularities. Consequently, a
multifractal measure consists of interwoven sets of singularities which are characterized by
their dimension that is given byf (α).

The case in which the crack dissipated energy of a brittle heterogeneous material is
multifractal in nature is examined. Instead of the ‘strictly’ continuum case examined
analytically [8, 9], the dissipated energy is quantified by employing the central-force lattice
model. Accordingly, the multifractal spectrum must be defined in terms associated with the
lattice model in a rather ‘standard’ fashion, i.e. as presented in [19].

For future reference, a moment of ordern of the crack dissipated energy is defined by

〈En〉 =
all bins∑

i=1

|Ei |nNi(E, L) (4.1)

whereNi(E, L) is the histogram of the dissipated energy rescaled with respect to max(|Ei |)
and the sum is over all the bins of the histogram.

As mentioned above, it is possible to describe the crack dissipated energy in terms
of an infinite set of scaling exponents or by its Legendre transformation (thef (α)

spectrum). Accordingly [19], the study is made by plotting log(Ni(E, L)/ log(L) versus
log(E)/ log(L), the rescaled log-histogram of the dissipated energy distribution. As a result,
if the distribution is not multifractal, only a single point will be obtained; otherwise, the
resulting curve will tend to be size-independent for large lattice sizes. It is made clear that
the distribution of energy (energy released by each element that has been broken) at the
final stage of rupture is examined, i.e. at the same point where the multifractal properties
of the load distribution are studied in, for example, [7]. Further, it is noted that for the case
of extreme disorder, i.e. wheǹ/L → 0 and theCOV of the failure threshold is extreme,
would be at percolation threshold and the dissipation energy will be multifractal [20]. For
other cases, i.e. for the ones studied in our work, where`/L has a non-zero value and the
disorder is not extreme, at rupture (where the dissipated energy is studied) we have a sort
of ‘specialized’ percolation case, in the sense that a connection of broken bars from one
side of the specimen to the other is formed. It will be interesting to study the distribution of
dissipated energy before final fracture or the one recorded during the process of progressive
fracture, i.e. as done for problems relevant to ‘classical’ (not specialized) percolation by
Roux and Hansen [20].

If it is assumed that the moments are self-averaging, thenEnNi(E, L) will peak
somewhere in the sum; using this assumption and the saddle point method, i.e. [21],
equation (4.1) may be written as

〈En〉 ≈
∫ 1

0
EnNi(E, L) dE ≈ Ly(n) . (4.2)

For completeness, and in order to be as self-contained as possible, the interpretationf (α)–α,
the formalism for the moment equivalence for a multifractal is given. The integral in (4.2)
may be rewritten using a change of variable,

α(E, L) = − log(E)

log(L)
(4.3)
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as

〈En〉 ≈
∫ 1

0
L−nα(E,L)+f (E,L) dE (4.4)

where

f (E, L) = log(Ni(E, L))

log(L)
. (4.5)

In addition, another consequence of the self-averaging assumption is that the peak will
be pronounced for a particular value ofE. The position of the peak, which will lead to
the relation between scaling exponenty(n) and the multifractal spectrum, is determined by
taking the derivative of the exponent in (4.4),

∂f (α, L)

∂α

∣∣∣∣
α=α(n)

= n . (4.6)

The moment of the crack dissipated energy is then approximated by using (4.4) and (4.6),
giving

〈En〉 ≈
∫ 1

0
L−nα+f (E,L) dE (4.7)

≈ L−nα(n)+f (α(n),n) (4.8)

≈ Ly(n) (4.9)

where

y(n) = −nα(n) + f (α(n), L) . (4.10)

Sincey(n) is independent ofL, it follows that

f (α(n), L) = f (α(n)) = f (α) . (4.11)

All in all, the Legendre transformation off (α) andα to y(n) andn, respectively, has been
developed.

The method of examining the possible multifractal properties of dissipated energy is
similar to that reported in [7, 6]. Figure 2 shows a typical rescaled log-histogram of the
dissipated energy distribution at the failure state for different lattice sizes. A good collapse
of the data, especially with increasing lattice size, is observed. It is noted that the number of
simulations employed decreased with increasing lattice size. The numerical data associated
with the highest of energies are not shown in this and in subsequent figures, due to finite size
effects. In other words, the collapse of the data for high energies (smallα) is unacceptable.
There are two possible reasons for this. First, the number of broken elements with very
high energies is small compared to the total number of broken bars, and hence, a good
statistical sample is not obtained. Second, localized clusters of high energy regions may be
too large compared to the lattice size for appropriate stochastic analysis.

In figure 2 as well as in figure 3 a thin full curve corresponds to thep-model f (α)

curve and it is discussed subsequently. Figure 3 shows typical results for uniaxial tension,
dilatation and shear. Although the lattices considered are rather small to make any definite
conclusions, the fact that these plots tend to be size-independent (for increasing lattice size,
although the ‘collapse’ is not shown here for clarity in the figures) provides evidence that
the dissipated energy distribution is multifractal. It is noted that the log-histogram collapsed
into a single point (which implies a homogeneous fractal) for the zero disorder cases, where
COV = 0.
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Figure 2. Rescaled log-histogram of the dissipated energy obtained from four different lattices
(L = 20, 30, 40, 50) subjected to uniaxial tension. The coefficient of variation ofS is 0.2
and `S/L = 1. The thin full curve corresponds to the so-calledp-model multifractal, and is
discussed further in this paper.

An analytical solution to the problem of the crack dissipated energy would be useful
for comparison with the numerical approach of the lattice formalism, as well as the
understanding of brittle fracture. Under certain conditions there is a strong possibility
that the dissipated energy distribution is multifractal [8, 9]. The proposed model is the
(commonly used) so-calledp-model [22]. Using the notation of [9, 22], the generalized
dimensions are given by

Dq = {pq

1 + (1 − p1)
q}1/(1−q) (4.12)

wherep1 designates normalized dissipated energy along a (straight) crack of length equal to
the lower cut-off considered in the analysis. A value ofp1 = 0.5 indicates a homogeneous
fractal, while the lower its value the higher the spatial disorder in the dissipated energy.
Given the value ofp1, the expression for the multifractal spectrum is given in terms of a
dimensionless parameterζ ,

α = log2(p1 + 1) + log2(1 − p1)

ζ
(4.13)

and

f (α) = ζ log2(ζ )(ζ − 1) log2(ζ − 1)

ζ
. (4.14)

Parameterζ may be eliminated, giving the explicit expression forf (α) as a function of
α, with only one parameter,p1. Under certain conditions it was possible to find the value
of p1 analytically [9]. The analytical solutions are approximate and were obtained under
several simplifying assumptions:

• crack propagation was considered ‘fast’, i.e. singularities in front of a running crack
tip were ignored. Physically, this assumption implies that the crack is running at a velocity
high enough for the stresses to redistribute between two successive crack extensions of
small (equal to the lower cut-off) length.

• the material was considered incompressible, and this allows introduction of a stream
function and simplifies representation of the strain field. This implies a Poisson’s ratio equal
to 0.5.
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Figure 3. Typical rescaled log-histogram (broken curve) of the dissipated energy obtained from
L = 40 lattices (a) uniaxial tension, (b) dilatation, (c) pure shear. For all three cases,`S/L = 1,
and the full curve corresponds to thep-model multifractal discussed subsequently. For cases
(a) and (b) COV (S) = 0.2, while for case (c) COV (S) = 0.4.

• it was not possible to obtain an analytical solution for the case where the failure
thresholdS is a random field. Instead, the micro-strains were considered to be spatially
correlated random fields. The implications of this assumption are examined later.

• the analytical solution presumes that fluctuations are small, so that a relevant Taylor
series expansion is valid.
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It seems, at first glance, that the analytical solutions are for cases different to the ones the
numerical results were obtained. Although it is difficult to ‘produce’ numerically stationary
random micro-strain fields in the sense examined analytically [9], it is crucial to note that
the rupture problem examined is incrementally linear—between successive bond breaking
a linear problem is solved. Then, consider a crack tip (far from boundaries and/or other
cracks) and the instant before it extends by a small distance, that distance being equal to the
lattice spacing or the lower cut-off for the analytical (continuum) case. In the case where
the only disorder is inS (like the numerical results) the stress field in front of the crack
is that predicted by theory of elasticity (with a homogeneous material), i.e. the stress is
proportional tokr−λ, r being the distance from the crack tip,k being the stress intensity
factor, andλ = 0.5 for the classical fracture problem. Thus the crack-extension direction
is merely the weak direction in front of the crack and this is dictated by theS-field. The
magnitude of the dissipated energy during this crack extension is also governed by theS-
field, i.e. by the value of the failure stress in the weakest direction in front of the crack tip.
In the case where the only disorder is in the strain field (like the analytical solution) since
singularities were ignored (assumption 1) the crack-extension direction is again governed
by the weak direction in front of the crack and this is in turn dictated by the strain field.
The magnitude of the dissipated energy during this crack extension is again governed by the
strain field. Thus, if the statistical properties ofS for the numerical case and that of the strain
field for the analytical case are similar, the statistical properties of the dissipated energy for
the two cases should be similar. One major difference results from the fact that as the size
of the lattice increases, the stress intensity factor changes, and thus theα singularities may
be slightly different in the numerical solution case (S being random) to that in the analytical
one. Thus, theα value for the analytical solution (horizontal axis in figure 3) was replaced
by α − c, c being a constant such that the peak values of thef (α) curves collapsed. The
above, then, explains the ‘good’ comparison between the analytical and numerical solutions
shown in figure 3. The following important points should be mentioned.

Figure 4 shows the analytically predicted values ofp1 as a function ofCOV, for a
relatively spatially uncorrelated case, (a) where`S/L = 1/30 was considered for the micro-
strain field, and (b) for a strongly correlated case(`S/L = 1). Figure 4(a) suggests that
the disorder in the dissipated energy pattern is highest for the pure shear case, followed
by the tension and dilatation cases. However, figure 4(b) suggests that the ‘order’ between
tension and dilatation is opposite. It is interesting that numerical results first suggested such
differences between uncorrelated and strongly correlated cases, which was then backed up
by the analytical solution readily available.

Experimentally, it is known that fracture toughness as measured from a shear experiment
is higher than that measured from a tension test (dilatation tests are seldom performed). This
agrees with the curves shown in figure 4, where for constant specimen size, the lower value
of p1 will result in increased energy dissipation. Additionally, if we consider that`S is
characteristic of the material, then the curves in figure 4(a) would correspond to a structure
(specimen) 30 times larger than that in figure 4(b). It could be ‘instructional’ to evaluate
normalized (per material volume) dissipated energy for both such cases. However, the
problem of ‘similitude’ in fracture-related parameters is a rather complicated subject where
effects like rate of loading, plasticity, relative values of yield stress and elasticity modulus
come into picture. This exact subject is currently being examined in the context of the
results presented here.

In closing, we discuss some points relevant to the use off (α) as a measure of toughness.
Given the evidence of multifractal distribution of dissipated energy, the total energy
dissipated in a specimen will be strongly dependent on its underlying distribution which,
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Figure 4. Analytical values ofp1 as a function ofCOV (a) for a relatively spatially uncorrelated
case,̀ S/L = 1/30, (b) for a strongly correlated case,`S/L = 1.

in turn, is related to the initial heterogeneity of the material. Thus, the present approach
shows promise in establishing a fundamental relationship between material microstructure
and toughness. As another implication, toughness is shown to be size/shape-dependent as
well as dependent on the external loading conditions. Another aspect where the properties
of the dissipated energy distribution are of use is in identifying what parts, i.e. the ‘strong’
or the ‘weak’ ones in a gross sense, of a material are the major toughness contributors.
Experience, cf discussion in [1], has provided evidence that, depending on the specific
spatial disorder present, some materials dissipate energy mainly in their ‘strong’ regions,
while others in their ‘weak’ ones. We believe that work along the lines of the present
paper provides a fundamental framework for studying such important tasks closely. Of
course, the present work is amenable to several possible experimental verifications. A
combination of non-destructive, destructive and numerical work seems to be promising.
Several possibilities for extension and/or verification of the present work exist, an example is
given in the following. Non-destructive evaluation techniques can identify the initial spatial
distribution of material properties. Then, a combination of (experimental) investigation of
the fracture network/surfaces and numerical analysis of the problem of the distribution of
dissipated energy can provide the relevantf (α). This should provide a relation among initial
material heterogeneity, properties of the fracture surfaces/network, and energy dissipated for
its development. By comparing with the total energy dissipated in a sample (measured
experimentally) and by studying the cracks not interconnected with the main one(s),
information on the so-called fracture process ‘zone’ can be obtained. This is partly the
reason why cracks not connected with the main one(s) were not included in the present
analysis (dissipated energy distribution). It seems that for some materials such a process
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zone is important while for other ones it is negligible, and this needs to be investigated on
a fundamental basis.

5. Conclusions

Through a lattice-based numerical approach, renewed fracture-toughness related parameters
are suggested. In particular, thef (α) curve of the dissipated energy shows considerable
promise in serving as a material-, structure-, as well as load-path-dependent set of
characterization parameters. Thus, it is suggested herein that fracture toughness should
not be defined independently of the nature of the external load applied to a structure or
even independently of its geometry (size, shape). Further, thep-model, when applicable,
provides an even further simplified description in terms of one number, namelyp1. In
passing, an important connection between a purely statistical mechanics and a continuum-
based approach to the problem of rupture and toughness is addressed. Finally, it is stressed
that this work is amenable to experimental and further numerical verifications—some paths
towards this are discussed.
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